Lie symmetries and invariants for the time-dependent generalizations of the equation
$R+C_{1} R^{n} L+C_{2} R^{m} R=0$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 243181
(http://iopscience.iop.org/0305-4470/24/13/029)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 11:00

Please note that terms and conditions apply.

COMMENT

Lie symmetries and invariants for the time-dependent generalizations of the equation $\ddot{\boldsymbol{R}}+C_{1} \boldsymbol{R}^{n} \boldsymbol{L}+C_{2} \boldsymbol{R}^{m} \boldsymbol{R}=0$

I C Moreira and O M Ritter
Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21945 Rio de Janeiro, RJ, Brazil

Received 11 February 1991

Abstract

In this comment we use an invertible point transformation for the study of time-dependent equations derived from the equation $\ddot{\boldsymbol{R}}+C_{1} R^{n} L+C_{2} R^{m} R=0$. This procedure generalizes some results obtained recently by Leach and Gorringe.

1. Introduction

In a recent paper, published in this journal, Leach and Gorringe (1990) analysed the Lie symmetries for the equation

$$
\begin{equation*}
\ddot{\boldsymbol{R}}+h(R) \boldsymbol{L}+q(R) \boldsymbol{R}=0 \tag{1}
\end{equation*}
$$

where $\boldsymbol{L}=\boldsymbol{R} \times \dot{\boldsymbol{R}}$ and $\ddot{\boldsymbol{R}}=\mathrm{d}^{2} \boldsymbol{R} / \mathrm{d} \boldsymbol{T}^{2}$. Two special cases of this equation are particularly important from a physical point of view: the Kepler problem, where $h(R)=0$ and $q(R)=k R^{-3}$, and the charge-monopole problem, if $\left.h(R)\right)=C R^{-3}$ and $q(R)=0$. In this comment we give some time-dependent generalizations of these systems; they are obtained by using invertible point transformations. We find the general expression for the system of differential equations which are equivalent to the equation

$$
\begin{equation*}
\ddot{\boldsymbol{R}}+C_{1} \boldsymbol{R}^{n} \boldsymbol{L}+C_{2} R^{m} \boldsymbol{R}=0 \tag{2}
\end{equation*}
$$

under a special point transformation. Equation (2) is sufficiently general for our purpose: it is a particular form of equation (1) of Leach and Gorringe (1990). All the properties of the transformed system, its symmetry generators, invariants and solutions can be found from the knowledge of the corresponding properties of equation (2). From this analysis several of the results by Katzin and Levine (1983) and by Leach and Gorringe (1990) are directly found and generalized. We discuss also the Lie symmetry structure for the generalized equation of motion of a charged particle in the field of a magnetic dipole.

The Lie algebra associated with the symmetry generators of equation (1), in the general case, is $a_{1} \oplus S O(3)$, with a_{1} representing the symmetry under time translation and $S O$ (3) the rotational invariance. The symmetry generators, in this case, are

$$
\begin{align*}
& U_{1}=\frac{\partial}{\partial T} \quad U_{2}=Z \frac{\partial}{\partial Y}-Y \frac{\partial}{\partial Z} \\
& U_{3}=X \frac{\partial}{\partial Z}-Z \frac{\partial}{\partial X} \quad U_{4}=Y \frac{\partial}{\partial X}-X \frac{\partial}{\partial Y} . \tag{3}
\end{align*}
$$

If we make the invertible point transformation

$$
\begin{equation*}
\boldsymbol{R}=f(t) r \quad T=g(t) \tag{4}
\end{equation*}
$$

the equation (2) will be transformed to the equation

$$
\begin{equation*}
\ddot{\boldsymbol{r}}+f_{1}(t) \dot{r}+f_{2}(t) r+C_{1} f_{3}(t) r^{n} \boldsymbol{l}+C_{2} f_{4}(t) r^{m} r=0 \tag{5}
\end{equation*}
$$

where $\boldsymbol{l}=\boldsymbol{r} \times \dot{\boldsymbol{r}}$ and

$$
\begin{align*}
& 2 \dot{f} / f-\ddot{g} / \dot{g}=f_{1} \quad f^{n+1} \dot{g}=f_{3} \\
& \ddot{f} / f-(\ddot{g} / \dot{g})(\dot{f} / f)=f_{2} \quad f^{m} \dot{g}^{2}=f_{4} . \tag{6}
\end{align*}
$$

The system (6) can be solved in terms of f_{1} and f_{3}, if $n \neq-3$,

$$
\begin{align*}
& f=f_{3}^{1 /(n+3)} \exp \left(\frac{1}{(n+3)} \int f_{1} \mathrm{~d} t\right) \\
& g=\int f_{3}^{2 /(n+3)} \exp \left(-\frac{(n+1)}{(n+3)} \int f_{1} \mathrm{~d} t\right) \mathrm{d} t \tag{7}\\
& f_{4}=f_{3}^{(m+4) /(n+3)} \exp \left(\frac{(m-2 n-2)}{(n+3)} \int f_{1} \mathrm{~d} t\right)
\end{align*}
$$

and f_{2} satisfies
$f_{2}=-\frac{(n+4)}{(n+3)^{2}} \dot{f}_{3}^{2} / f_{3}^{2}+\frac{1}{(n+3)} \ddot{f}_{3} / f_{3}+\frac{(n+1)}{(n+3)^{2}} f_{1} \dot{f}_{3} / f_{3}+\frac{1}{(n+3)} \dot{f}_{1}+\frac{(n+2)}{(n+3)^{2}} f_{1}^{2}$.
If we impose $f_{1}=0$ in (7) we get

$$
\begin{equation*}
f=\dot{\boldsymbol{g}}^{1 / 2} . \tag{9}
\end{equation*}
$$

Making $f=W^{-1}(t)$ the equation (5) becomes

$$
\begin{equation*}
\ddot{r}-(\ddot{W} / W) r+C_{1} W^{-(n+3)} r^{n} l+C_{2} W^{-(m+4)} r^{m} r=0 . \tag{10}
\end{equation*}
$$

For the case $n=-3$ the solution of equations (6) is

$$
\begin{align*}
& f_{1}=-\dot{f}_{3} / f_{3} \quad f=f_{4}^{1 /(m+4)} f_{3}^{-2 /(m+4)} \\
& f_{2}=\ddot{f} / f-\left(\dot{f}_{3} / f_{3}+2 \dot{f} / f\right) \dot{f} / f \quad g=\int f_{3} f^{2} \mathrm{~d} t . \tag{11}
\end{align*}
$$

We observe that the reverse of our procedure was discussed in a paper by Berkovich and Rozov (1972) where they applied a method of transforming non-autonomous nonlinear equations into autonomous ones.

2. Equations with a scale symmetry

We will find firstly the most general equation (2) with a scale symmetry. If we impose this symmetry

$$
\begin{equation*}
U_{s}=T \frac{\partial}{\partial T}+a X^{i} \frac{\partial}{\partial X^{i}} \tag{12}
\end{equation*}
$$

and use the Lie conditions for the equation (2), we find the following equation:

$$
\begin{equation*}
\ddot{\boldsymbol{R}}+C_{1} R^{n} \boldsymbol{L}+C_{2} R^{2(n+1)} \boldsymbol{R}=0 \tag{13}
\end{equation*}
$$

The motivation for the choice of the vector field U_{5} (and of the vector field U_{6} below) was the analysis made by Leach and Gorringe (1990) where similar systems were considered.

The equation (13) has the symmetry generators $U_{1}, U_{2}, U_{3}, U_{4}$ and the additional symmetry generator

$$
\begin{equation*}
U_{5}=T \frac{\partial}{\partial T}-(n+1)^{-1} X^{i} \frac{\partial}{\partial X^{i}} . \tag{14}
\end{equation*}
$$

The Lie algebra associated with these generators is $\mathrm{a}_{2} \oplus \mathrm{SO}(3)$.
The time-dependent equation, with the same Lie symmetry structure but with transformed symmetry generators, obtained from (13) and (4), is

$$
\begin{equation*}
\ddot{r}+f_{1} \dot{r}+f_{2} r+C_{1} f_{3} r^{n} \boldsymbol{l}+C_{2} f_{4} r^{2(n+1)} r=0 . \tag{15}
\end{equation*}
$$

The f_{i} are given by (7), if $n \neq-3$, and by (11) if $n=-3$.
If we search for a particular case of equation (2) with the additional symmetry

$$
\begin{equation*}
U_{6}=T^{2} \frac{\partial}{\partial T}+T X^{i} \frac{\partial}{\partial X^{i}} \tag{16}
\end{equation*}
$$

the Lie conditions lead to the equation

$$
\begin{equation*}
\ddot{\boldsymbol{R}}+C_{1} R^{-3} L+C_{2} R^{-4} R=0 . \tag{17}
\end{equation*}
$$

The Lie algebra associated with the symmetry generators U_{1}, \ldots, U_{6} is, in this case, $\mathrm{sl}(2, R) \oplus \mathrm{SO}(3)$. The transformed equation is

$$
\begin{equation*}
\ddot{r}+f_{1} \dot{r}+f_{2} r+C_{1} f_{3} r^{-3} \boldsymbol{l}+C_{2} f_{4} r^{-4} r=0 \tag{18}
\end{equation*}
$$

where the f_{i} are given by (6).

3. Time-dependent case of the Kepler problem considered by Katzin and Levine (1983)

Let $m=-3, C_{1}=0$ in (2). Solving (6), with $f_{1}=0$, we get

$$
\begin{align*}
& f_{3}=C_{0} \quad f=f_{4} \\
& f_{2}=\ddot{f}_{4} / f_{4}-2 \dot{f}_{4}^{2} / f_{4}^{2} . \tag{19}
\end{align*}
$$

Making $f_{4}=W^{-1}(t)$, equation (5) is reduced to the equation

$$
\begin{equation*}
\ddot{r}-(\ddot{W} / W) r+k W^{-1} r^{-3} r=0 \tag{20}
\end{equation*}
$$

under the point transformation

$$
\begin{equation*}
\underline{R}=W^{-1} \boldsymbol{r} \quad \boldsymbol{T}=\int W^{-2} \mathrm{~d} t \tag{21}
\end{equation*}
$$

The symmetry generators for the Kepler problem are U_{1}, U_{2}, U_{3}, and U_{4} in (3), and

$$
\begin{equation*}
U_{5}=T \frac{\partial}{\partial T}+\frac{2}{3} X^{i} \frac{\partial}{\partial X^{i}} . \tag{22}
\end{equation*}
$$

The symmetry generators for (20), obtained by Katzin and Levine (1983), can be determined directly from (3), (21) and (22). By using the transformation (21) the conserved Laplace-Runge-Lenz vector can be generalized for equation (20). It takes the form

$$
\begin{equation*}
I_{1}=\boldsymbol{l} \times(\boldsymbol{W} \dot{r}-\dot{W} r)+k r^{-1} r . \tag{23}
\end{equation*}
$$

4. Time-dependent generalization of the charge-monopole and charge-dipole problems

The equation describing the pure charge-monopole interaction is a particular case of equation (2); if we choose $C_{2}=0, n=-3$ it leads to

$$
\begin{equation*}
\ddot{\boldsymbol{R}}+C_{1} R^{-3} \boldsymbol{L}=0 \tag{24}
\end{equation*}
$$

Solving (6) for this case and choosing $f_{3}=1, f=W^{-1}$, we get, from (5), the equation

$$
\begin{equation*}
\ddot{r}-(\ddot{W} / W) r+C_{2} r^{-3} \boldsymbol{l}=0 \tag{25}
\end{equation*}
$$

which describes a charge-monopole interaction plus a time-dependent linear force. This case can be generalized by including the force $C_{2} R^{-4} R$. In this case equation (25) becomes

$$
\begin{equation*}
\ddot{\boldsymbol{r}}-(\ddot{W} / W) r+C_{1} r^{-3} \boldsymbol{l}+C_{2} r^{-4} r=0 \tag{26}
\end{equation*}
$$

with the same Lie symmetry group as the charge-monopole equation (24): $\operatorname{sl}(2, R) \oplus$ SO(3) (Moreira et al 1985).

The invariants for equation (24) are

$$
\begin{array}{ll}
\boldsymbol{J}=\boldsymbol{L}-C_{1} R^{-1} \boldsymbol{R} & E=\dot{R}^{2} / 2 \\
I_{1}=\dot{\boldsymbol{R}} \cdot(\boldsymbol{R}-\dot{\boldsymbol{R}} T) & I_{2}=(\boldsymbol{R}-\dot{\boldsymbol{R}} T)^{2} \tag{27}
\end{array}
$$

From them the invariants for the transformed equation (25) can be found easily. They are

$$
\begin{align*}
& \boldsymbol{J}=\boldsymbol{l}-C_{1} r^{-1} \boldsymbol{r} \quad E=(\dot{W} \dot{r}-\dot{W} \boldsymbol{r})^{2} / 2 \\
& I_{1}=\boldsymbol{r} \cdot \dot{r}(1+2 W \dot{W} D)-W^{2} D \dot{r}^{2}-\dot{W}\left(W^{-1}-\dot{W} D\right) r^{2} \tag{28}\\
& I=\left[W^{-1} \boldsymbol{r}-(W \dot{r}-\dot{W} \boldsymbol{r}) D\right]^{2}
\end{align*}
$$

where $D=\int W^{-2} \mathrm{~d} t$. These time-dependent systems are three-dimensional Ermakov systems with a given symmetry structure.

We consider now another similar problem. The interaction between an electric charge and a magnetic dipole is an important physical problem; in recent years the scattering of the charged particle, in this problem, has been analysed as an example of chaotic scattering (Jung and Scholz 1988). We discuss now the Lie symmetry structure for the equation which describes this motion. The magnetic field produced by a dipole, with magnetic moment $\boldsymbol{M}=A_{0} \hat{k}$, is

$$
\begin{equation*}
B=R^{-5}\left[3(M \cdot R) R-R^{2} M\right] \tag{29}
\end{equation*}
$$

and the equation for an electrically charged parrticle in this field is given by

$$
\begin{equation*}
\ddot{\boldsymbol{R}}+\lambda \boldsymbol{R}^{-5}\left[\dot{\boldsymbol{R}} \times\left(\boldsymbol{R}^{2} \hat{\boldsymbol{k}}-3(\hat{\boldsymbol{k}} \cdot \boldsymbol{R}) \boldsymbol{R}\right]\right. \tag{30}
\end{equation*}
$$

where $\lambda=q A_{0} / m c$, and the vector M is directed along the Z axis.
By applying the twice extended operator $U^{\prime \prime}$ to the equation (30) we arrive at the following solutions for the symmetry generators:

$$
\begin{align*}
& U_{1}=\frac{\partial}{\partial T} \quad U_{2}=X \frac{\partial}{\partial Y}-Y \frac{\partial}{\partial X} \\
& U_{3}=T \frac{\partial}{\partial T}+(X / 3) \frac{\partial}{\partial X}+(Y / 3) \frac{\partial}{\partial Y}+(Z / 3) \frac{\partial}{\partial Z} \tag{31}
\end{align*}
$$

The physical meaning of these symmetries is clear. The vector field U_{1} represents the time translation invariance, U_{2} the invariance under rotations around the Z-axis and U_{3} a scale symmetry. The commutation relations are

$$
\begin{equation*}
\left[U_{1}, U_{2}\right]=0 \quad\left[U_{1}, U_{3}\right]=U_{1} \quad\left[U_{2}, U_{3}\right]=0 \tag{32}
\end{equation*}
$$

corresponding to the Lie algebra $\mathrm{a}_{1} \oplus \mathrm{a}_{2}$.
The application of the point transformation (4) to equation (30) leads to

$$
\begin{equation*}
\ddot{\boldsymbol{r}}+f_{1}(i) \dot{\boldsymbol{r}}+f_{2}(i) \boldsymbol{r}+\lambda f_{3}(t) r^{-5} \dot{\boldsymbol{r}} \times\left(r^{2} \hat{\boldsymbol{k}}-3 z \boldsymbol{r}\right)+\lambda f_{4}(t) r^{-1} r \times \hat{\boldsymbol{k}}=0 \tag{33}
\end{equation*}
$$

where

$$
\begin{align*}
& f_{1}=2 \dot{f} / f-\ddot{g} / \dot{g} \quad f_{2}=\ddot{f} / f-\ddot{g} \dot{f} / \dot{g} f \\
& f_{3}=\dot{g} / f^{3} \quad f_{4}=\dot{g} \dot{f} / f^{4} . \tag{34}
\end{align*}
$$

These equations can be solved in terms of f_{1} and f_{3}, and we get

$$
\begin{align*}
& f=f_{3}^{-1} \exp \left(-\int f_{1} \mathrm{~d} t\right) \quad g=\int f_{3}^{-2} \exp \left(-3 \int f_{1} \mathrm{~d} t\right) \mathrm{d} t \\
& f_{4}=-\left(\dot{f}_{3}+f_{1} f_{3}\right) \quad f_{2}=-\left(\ddot{f}_{3} / f_{3}+3 f_{1} \dot{f}_{3} / f_{3}+\dot{f}_{1}+2 f_{1}^{2}\right) . \tag{35}
\end{align*}
$$

Making $f=W^{-1}(t)$, equation (33) becomes

$$
\begin{equation*}
\ddot{r}-(\ddot{W} / W) r+\lambda W r^{-5} \dot{r} \times\left(r^{2} \hat{\boldsymbol{k}}-3 z r\right)-\lambda \dot{W} r^{-3} r \times \hat{\boldsymbol{k}}=0 . \tag{36}
\end{equation*}
$$

The following invariants for the equation (30) can be easily determined:

$$
I_{1}=\dot{R}^{2} / 2 ; I_{2}=(X \dot{Y}-\dot{X} Y)+\lambda\left(X^{2}+Y^{2}\right) R^{-3}
$$

and the corresponding invariants for (33) are given by

$$
\begin{aligned}
& I_{1}=[(f / \dot{g}) \dot{r}+(\dot{f} / g) r]^{2} / 2 \\
& I_{2}=\left(f^{2} / \dot{g}\right)(x \dot{y}-\dot{x} y)+\lambda f^{-1} r^{-3}\left(x^{2}+y^{2}\right) .
\end{aligned}
$$

References

Berkovich L M and Rozov N K 1972 Diff. Eq. 81609
Jung C and Scholz H-J 1988 J. Phys. A: Math. Gen. 212301
Katzin G H and Levine J 1983 J. Math. Phys. 241761
Leach P G L and Gorringe V M 1990 J. Phys. A: Math. Gen. 232765
Moreira I C, Ritter O M and Santos F C 1985 J. Phys. A: Math. Gen. 18 L427; Rev. Bras. Fis. 15174

